99超碰中文字幕在线观看-天天干天天日天天舔婷婷-我看操逼的好看的女人的-日本一二三四五区日韩精品

產(chǎn)品展廳收藏該商鋪

您好 登錄 注冊(cè)

當(dāng)前位置:
美國(guó)布魯克海文儀器公司>資料下載>測(cè)量應(yīng)用案例-20190502

資料下載

測(cè)量應(yīng)用案例-20190502

閱讀:231          發(fā)布時(shí)間:2019-5-28
提 供 商 美國(guó)布魯克海文儀器公司 資料大小 930.9KB
資料圖片 下載次數(shù) 40次
資料類(lèi)型 PDF 文件 瀏覽次數(shù) 231次
免費(fèi)下載 點(diǎn)擊下載    
 文獻(xiàn)名: Transport and retention of silver nanoparticles in soil: Effects of input concentration, particle size and surface coating

 

作者: Jianzhou Hea,b; Dengjun Wangc; Dongmei Zhoua

aKey Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China

bUniversity of Chinese Academy of Sciences, Beijing 100049, China

cNational Research Council Resident Research Associate, U.S. Environmental Protection Agency, Ada, OK 74820, United States

 

摘要:Soils are considered as a major sink for engineered nanoparticles (ENPs) because of their inevitable release to the subsurface environment during production, transportation, use and disposal processes. In this context, the transport and retention of silver nanoparticles (AgNPs) with different input particle concentration, particle size, and surface coating were investigated in clay loam using water-saturated column experiments. Our results showed that the mobility of AgNPs in the soil was considerably low, and >73.9% of total injected AgNPs (except for no coating condition) was retained in columns. This is primarily due to the high specific surface area and favorable retention sites in soil. Increased transport of AgNPs occurred at higher input concentration and smaller particle size. The presence of surface coatings (i.e., polyvinylpyrrolidone (PVP) and citrate) further promoted the transport and reduced the retention of AgNPs in soil, which is likely due to their effective blocking of the solid-phase sites that are originally available for AgNPs retention. Although the shape of retention profiles (RPs) of AgNPs was either hyperexponential or nonmonotonic that is different from the colloid filtration theory prediction, the 1-species (consider both time- and depth-dependent retention) and/or 2-species (account for the release of reversibly deposited AgNPs) model successfully described the transport behaviors of AgNPs in soil columns under all the investigated conditions. This study proves the applicability of mathematical model in predicting the fate and transport of ENPs in real soils, and our findings presented herein are significant to ultimately develop management strategies for reducing the potential risks of groundwater contamination due to ENPs entering the environment.

收藏該商鋪

請(qǐng) 登錄 后再收藏

提示

您的留言已提交成功!我們將在第一時(shí)間回復(fù)您~

對(duì)比框

產(chǎn)品對(duì)比 產(chǎn)品對(duì)比 聯(lián)系電話(huà) 二維碼 意見(jiàn)反饋 在線(xiàn)交流

掃一掃訪(fǎng)問(wèn)手機(jī)商鋪
010-62081908
在線(xiàn)留言
黎平县| 汉寿县| 海丰县| 云和县| 中山市| 湖南省| 射阳县| 通榆县| 麟游县| 本溪市| 科技| 鹿邑县| 嘉义县| 上饶市| 德令哈市| 新泰市| 西乡县| 道真| 凌海市| 凤城市| 龙岩市| 遂溪县| 甘洛县| 广元市| 烟台市| 萝北县| 洞头县| 扎鲁特旗| 汉沽区| 清河县| 图片| 喀喇| 盐池县| 顺昌县| 罗平县| 北宁市| 咸丰县| 梁河县| 都安| 黄骅市| 鄱阳县|