99超碰中文字幕在线观看-天天干天天日天天舔婷婷-我看操逼的好看的女人的-日本一二三四五区日韩精品

您好, 歡迎來(lái)到化工儀器網(wǎng)

| 注冊(cè)| 產(chǎn)品展廳| 收藏該商鋪

400-005-5117

Download

首頁(yè)   >>   資料下載   >>   Direct measurement of multiwall nanotube

美國(guó)科諾工業(yè)有限公司 (...

立即詢價(jià)

您提交后,專(zhuān)屬客服將第一時(shí)間為您服務(wù)

Direct measurement of multiwall nanotube

閱讀:975      發(fā)布時(shí)間:2009-08-12
分享:

The contact angle between multiwall carbon nanotubes, carbon nanofiber and carbon fibers, and polypropylene and polyethylene glycol was measured using electron microscopy. Good wetting was observed using both polymers. The Owens–Wendt plotting procedure was used to obtain the polar, dispersive and total surface energy parameters for the three types of carbon materials. Minor
differences only were found between these.

Carbon nanotube-based composites have generated considerable interest over the past few years in the materials research community because of their potential for large increases in strength and stiffness relative to conventional carbon fiber-reinforced polymer composites [1,2]. Key aspects of the performance of nanotube- based composites include the extent to which a
tube can be wetted by a given polymer. The interface between matrix and reinforcement plays a crucial role in the physical performance of the composite. In particular, the nature of the interface is dominant in fracture toughness, corrosion and moisture resistance. In the case of non-functionalized carbon nanotubes the contribution of wetting to adhesion is considered to
be significant. Wetting of nanotubes by the surrounding media is necessary in order to couple the inherent strength of the nanotubes to the matrix, unless direct chemical bonding is induced. If the interface is weak the composite has low strength and stiffness, but high
resistance to fracture. In the case of strong interfaces the composite has high strength and stiffness, but is brittle. As the wetting properties of a fiber may differ significantly from those of a plane solid surface [3], some theoretical studies predict that this effect becomes
more prominent as the fiber diameter decreases and a transition from partial wetting to non-wetting will occur at the nanometric scale [4,5]. Qualitative studies show excellent wettability of the graphitic inner tube walls by water [6]. Dujardin et al. [7,8] used
transmission electron microscopy to measure the contact angle of metals on carbon nanotubes and estimate the energy surface parameters both for single wall and multiwall carbon nanotubes and found that the transition from non-wetting to at least partial wetting occurs
with liquids that have surface tension between  130–190 mJ/m2. Barber et al. [9] utilized atomic force microscopy and the Wilhelmy balance method to quantify the contact angle between nanotubes and a variety of organic liquids and showed that most organic liquids at least partially wet a nanotube surface, although this becomes less favorable as the liquid becomes
more polar. Such work is technically demanding and time consuming to execute, hence, a more
direct and straightforward method is desirable. In the present Letter, the contact angle between molten polymers subsequently cooled on graphite fibers, nanofibrils and multi-walled carbon nanotubes ismeasured using electron microscopy. Thus, the wetting
behavior of polymer melts on these carbon surfaces
may be evaluated.

提供商

美國(guó)科諾工業(yè)有限公司 (戰(zhàn)略合作伙伴:上海梭倫信息科技有限公司)

下載次數(shù)

0次

資料大小

0K

資料類(lèi)型

未傳

資料圖片

--

瀏覽次數(shù)

975次

會(huì)員登錄

請(qǐng)輸入賬號(hào)

請(qǐng)輸入密碼

=

請(qǐng)輸驗(yàn)證碼

收藏該商鋪

標(biāo)簽:
保存成功

(空格分隔,最多3個(gè),單個(gè)標(biāo)簽最多10個(gè)字符)

常用:

提示

您的留言已提交成功!我們將在第一時(shí)間回復(fù)您~
在線留言
合阳县| 利辛县| 丹凤县| 大新县| 玛曲县| 皮山县| 丰都县| 叙永县| 开封县| 根河市| 临城县| 保山市| 双辽市| 伊吾县| 宿迁市| 尼勒克县| 临沭县| 城固县| 宜兰县| 永春县| 商河县| 双牌县| 平果县| 百色市| 青州市| 闵行区| 栖霞市| 神池县| 屯留县| 襄垣县| 板桥市| 平顶山市| 广州市| 柳州市| 浙江省| 兴安县| 浮山县| 肥城市| 建水县| 浑源县| 偃师市|