99超碰中文字幕在线观看-天天干天天日天天舔婷婷-我看操逼的好看的女人的-日本一二三四五区日韩精品

瑞士萬通中國有限公司

離子色譜在乙醇壓力作用下對運(yùn)動發(fā)酵單胞菌的轉(zhuǎn)錄組進(jìn)行剖析

時(shí)間:2014-5-7 閱讀:4000
分享:

Transcriptome profiling of Zymomonas mobilis under ethanol stress

離子色譜在乙醇壓力作用下對運(yùn)動發(fā)酵單胞菌的轉(zhuǎn)錄組進(jìn)行剖析

Abstract

Background: High tolerance to ethanol is a desirable characteristics for ethanologenic strains used in industrial ethanol fermentation. A deeper understanding of the molecular mechanisms underlying ethanologenic strains tolerance of ethanol stress may guide the design of rational strategies to increase process performance in industrial alcoholic production. Many extensive studies have been performed in Saccharomyces cerevisiae and Escherichia coli.

However, the physiological basis and genetic mechanisms involved in ethanol tolerance for Zymomonas mobilis are poorly understood on genomic level. To identify the genes required for tolerance to ethanol, microarray technology was used to investigate the transcriptome profiling of the ethanologenic Z. mobilis in response to ethanol stress.

Results: We successfully identified 127 genes which were differentially expressed in response to ethanol. Ethanol up- or down-regulated genes related to cell wall/membrane biogenesis, metabolism, and transcription. These genes were classified as being involved in a wide range of cellular processes including carbohydrate metabolism, cell wall/ membrane biogenesis, respiratory chain, terpenoid biosynthesis, DNA replication, DNA recombination, DNA repair,

transport, transcriptional regulation, some universal stress response, etc.

Conclusion: In this study, genome-wide transcriptional responses to ethanol were investigated for the first time in Z. mobilis using microarray analysis.Our results revealed that ethanol had effects on multiple aspects of cellular metabolism at the transcriptional level and that membrane might play important roles in response to ethanol. Although the molecular mechanism involved in tolerance and adaptation of ethanologenic strains to ethanol is still

unclear, this research has provided insights into molecular response to ethanol in Z. mobilis. These data will also be helpful to construct more ethanol resistant strains for cellulosic ethanol production in the future.

會員登錄

×

請輸入賬號

請輸入密碼

=

請輸驗(yàn)證碼

收藏該商鋪

X
該信息已收藏!
標(biāo)簽:
保存成功

(空格分隔,最多3個(gè),單個(gè)標(biāo)簽最多10個(gè)字符)

常用:

提示

X
您的留言已提交成功!我們將在第一時(shí)間回復(fù)您~
撥打電話 產(chǎn)品分類
在線留言
体育| 龙岩市| 洛宁县| 务川| 灌阳县| 大丰市| 蓬溪县| 阜新| 化隆| 兰州市| 泸水县| 思茅市| 涞水县| 富蕴县| 崇左市| 中方县| 同江市| 鹿泉市| 定边县| 南通市| 连州市| 宝坻区| 绥江县| 高雄县| 许昌市| 涪陵区| 平泉县| 安化县| 峨边| 临安市| 石门县| 曲松县| 南皮县| 新巴尔虎右旗| 嘉义市| 嵩明县| 凤冈县| 上林县| 卢湾区| 五家渠市| 炉霍县|